enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction. Dijkstra's algorithm and the related A* search algorithm are verifiably optimal greedy algorithms for graph search and shortest path finding.

  3. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  4. Local search (constraint satisfaction) - Wikipedia

    en.wikipedia.org/wiki/Local_search_(constraint...

    Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.

  5. Beam search - Wikipedia

    en.wikipedia.org/wiki/Beam_search

    Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to some heuristic. But in beam search, only a predetermined number of best partial solutions are kept as candidates. [1] It is thus a greedy algorithm.

  6. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* achieves better performance by using heuristics to guide its search. Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed ...

  7. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    The basic algorithm – greedy search – works as follows: search starts from an enter-point vertex by computing the distances from the query q to each vertex of its neighborhood {: (,)}, and then finds a vertex with the minimal distance value. If the distance value between the query and the selected vertex is smaller than the one between the ...

  8. Greedy randomized adaptive search procedure - Wikipedia

    en.wikipedia.org/wiki/Greedy_randomized_adaptive...

    The greedy randomized adaptive search procedure (also known as GRASP) is a metaheuristic algorithm commonly applied to combinatorial optimization problems. GRASP typically consists of iterations made up from successive constructions of a greedy randomized solution and subsequent iterative improvements of it through a local search. [1]

  9. Hill climbing - Wikipedia

    en.wikipedia.org/wiki/Hill_climbing

    It is used widely in artificial intelligence, for reaching a goal state from a starting node. Different choices for next nodes and starting nodes are used in related algorithms. Although more advanced algorithms such as simulated annealing or tabu search may give better results, in some situations hill climbing works just as well. Hill climbing ...