enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circle Hough Transform - Wikipedia

    en.wikipedia.org/wiki/Circle_Hough_Transform

    The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.

  3. Hough transform - Wikipedia

    en.wikipedia.org/wiki/Hough_transform

    The Hough transform is a feature extraction technique used in image analysis, computer vision, pattern recognition, and digital image processing. [1] [2] The purpose of the technique is to find imperfect instances of objects within a certain class of shapes by a voting procedure.

  4. Generalised Hough transform - Wikipedia

    en.wikipedia.org/wiki/Generalised_Hough_transform

    The Hough transform was initially developed to detect analytically defined shapes (e.g., line, circle, ellipse etc.). In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.

  5. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  6. Edge detection - Wikipedia

    en.wikipedia.org/wiki/Edge_detection

    Thus, applying an edge detection algorithm to an image may significantly reduce the amount of data to be processed and may therefore filter out information that may be regarded as less relevant, while preserving the important structural properties of an image. If the edge detection step is successful, the subsequent task of interpreting the ...

  7. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  8. College football coaches near $15 million in bonuses. A ...

    www.aol.com/college-football-coaches-near-15...

    For example, with Ohio State receiving a playoff berth, its 10 primary assistant coaches are set for a combined total more than $1.2 million in bonuses, and they'll get more if the Buckeyes advance.

  9. Template matching - Wikipedia

    en.wikipedia.org/wiki/Template_matching

    Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [2] navigation of mobile robots, [3] or edge detection in images.