enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Observe the value of the friction factor for laminar flow at a Reynolds number of 1000. If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.064 are the numerator in the formula for the laminar Darcy friction factor: f D = ⁠ 64 / Re ⁠. If the value of ...

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In this form the law approximates the Darcy friction factor, the energy (head) loss factor, friction loss factor or Darcy (friction) factor Λ in the laminar flow at very low velocities in cylindrical tube. The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach ...

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism. Alternatively, in a more compact way, one can formulate the velocity field as follows:

  8. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    A laminar flow reactor (LFR) is a reactor that uses laminar flow to study chemical reactions and process mechanisms. A laminar flow design for animal husbandry of rats for disease management was developed by Beall et al. 1971 and became a standard around the world [9] including in the then-Eastern Bloc. [10]

  9. Bingham plastic - Wikipedia

    en.wikipedia.org/wiki/Bingham_plastic

    The Swamee–Aggarwal equation is used to solve directly for the Darcy–Weisbach friction factor f for laminar flow of Bingham plastic fluids. [8] It is an approximation of the implicit Buckingham–Reiner equation, but the discrepancy from experimental data is well within the accuracy of the data. The Swamee–Aggarwal equation is given by: