Search results
Results from the WOW.Com Content Network
A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â. To normalize a vector a = (a 1, a 2, a 3), scale the vector by the reciprocal of its length ‖a‖. That is:
A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In mathematics, physics, and engineering, a Euclidean vector (sometimes called a geometric vector [1] or spatial vector, [2] or – as here – simply a vector) is a geometric object that has both a magnitude (or length) and direction. A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "one who carries ...
Energy and momentum are interpreted as components of the four-momentum vector, and mass is the magnitude of this vector, so in geometric units these must all have the dimension of length. We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G / c 2 .
In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the line perpendicular to the tangent line to the curve at the point. A normal vector of length one is called a unit normal vector.
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.
Finally, introduce the dot and cross products of screws by the formulas: = (,) (,) = (, +), which is a dual scalar, and = (,) (,) = (, +), which is a screw. The dot and cross products of screws satisfy the identities of vector algebra, and allow computations that directly parallel computations in the algebra of vectors.