enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sound attenuator - Wikipedia

    en.wikipedia.org/wiki/Sound_attenuator

    A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.

  3. Head shadow - Wikipedia

    en.wikipedia.org/wiki/Head_shadow

    The obstruction caused by the head can account for attenuation (reduced amplitude) of overall intensity as well as cause a filtering effect. The filtering effects of head shadowing are an essential element of sound localisation —the brain weighs the relative amplitude, timbre , and phase of a sound heard by the two ears and uses the ...

  4. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    Acoustic attenuation in water is frequency-squared dependent, namely =. Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the of viscoelastic materials is between 0 and 2.

  5. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates. Hearing protectors help reduce acoustic flux from flowing into the ears.

  6. Interaural time difference - Wikipedia

    en.wikipedia.org/wiki/Interaural_time_difference

    (sound source: 100 ms white noise from 90° azimuth, 0° elevation) The interaural time difference (or ITD) when concerning humans or animals, is the difference in arrival time of a sound between two ears. It is important in the localization of sounds, as it provides a cue to the direction or angle of the sound source from the head. If a signal ...

  7. Head-related transfer function - Wikipedia

    en.wikipedia.org/wiki/Head-related_transfer_function

    HRTF filtering effect. A head-related transfer function (HRTF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others.

  8. Acoustic reflex - Wikipedia

    en.wikipedia.org/wiki/Acoustic_reflex

    The acoustic reflex (also known as the stapedius reflex, [1] stapedial reflex, [2] auditory reflex, [3] middle-ear-muscle reflex (MEM reflex, MEMR), [4] attenuation reflex, [5] cochleostapedial reflex [6] or intra-aural reflex [6]) is an involuntary muscle contraction that occurs in the middle ear in response to loud sound stimuli or when the person starts to vocalize.

  9. Acoustic streaming - Wikipedia

    en.wikipedia.org/wiki/Acoustic_streaming

    The attenuation coefficient is = / (), following Stokes' law (sound attenuation). This effect is more intense at elevated frequencies and is much greater in air (where attenuation occurs on a characteristic distance α − 1 {\displaystyle \alpha ^{-1}} ~10 cm at 1 MHz) than in water ( α − 1 {\displaystyle \alpha ^{-1}} ~100 m at 1 MHz).