Ad
related to: sound attenuator diagram labeled image of ear
Search results
Results from the WOW.Com Content Network
adjusted a label: 00:49, 28 February 2021: 512 × 389 (49 KB) Cherkash: added Danish (da) translation (based on the corrupted "Anatomy of the Human Ear Dansk.svg") 22:02, 30 January 2021: 512 × 389 (48 KB) Cherkash: fixed several Spanish terms: 21:32, 10 January 2021: 512 × 389 (48 KB) Cherkash
The acoustic reflex (also known as the stapedius reflex, [1] stapedial reflex, [2] auditory reflex, [3] middle-ear-muscle reflex (MEM reflex, MEMR), [4] attenuation reflex, [5] cochleostapedial reflex [6] or intra-aural reflex [6]) is an involuntary muscle contraction that occurs in the middle ear in response to loud sound stimuli or when the person starts to vocalize.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The inner ear (internal ear, auris interna) is the innermost part of the vertebrate ear. In vertebrates , the inner ear is mainly responsible for sound detection and balance. [ 1 ] In mammals , it consists of the bony labyrinth , a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts: [ 2 ]
The middle ear is the portion of the ear medial to the eardrum, and distal to the oval window of the cochlea (of the inner ear). The mammalian middle ear contains three ossicles (malleus, incus, and stapes), which transfer the vibrations of the eardrum into waves in the fluid and membranes of the inner ear .
The outer ear funnels sound vibrations to the eardrum, increasing the sound pressure in the middle frequency range. The middle-ear ossicles further amplify the vibration pressure roughly 20 times. The base of the stapes couples vibrations into the cochlea via the oval window , which vibrates the perilymph liquid (present throughout the inner ...
Acoustic attenuation in water is frequency-squared dependent, namely =. Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the of viscoelastic materials is between 0 and 2.
Sound waves travel through the outer ear, are modulated by the middle ear, and are transmitted to the vestibulocochlear nerve in the inner ear. This nerve transmits information to the temporal lobe of the brain, where it is registered as sound. Sound that travels through the outer ear impacts on the eardrum, and causes it to vibrate.
Ad
related to: sound attenuator diagram labeled image of ear