enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Cross-coupling_reaction

    In organic chemistry, a cross-coupling reaction is a reaction where two different fragments are joined. Cross-couplings are a subset of the more general coupling reactions. Often cross-coupling reactions require metal catalysts. One important reaction type is this:

  3. Coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Coupling_reaction

    The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3] Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki were awarded the 2010 Nobel Prize in Chemistry for developing palladium-catalyzed cross coupling reactions. [4] [5] Broadly speaking, two types of coupling reactions are recognized:

  4. XPhos - Wikipedia

    en.wikipedia.org/wiki/XPhos

    Both palladium and copper complexes of the compound exhibit high activity for the coupling of aryl halides and aryl tosylates with various amides. [1] It is also an efficient ligand for several commonly used CC bond-forming cross-coupling reactions, including the Negishi, Suzuki, and the copper-free Sonogashira coupling reactions.

  5. Ullmann condensation - Wikipedia

    en.wikipedia.org/wiki/Ullmann_condensation

    The coupling of 2-chlorobenzoic acid and aniline is illustrative: [4] C 6 H 5 NH 2 + ClC 6 H 4 CO 2 H + KOH → C 6 H 5 N(H)−C 6 H 4 CO 2 H + KCl + H 2 O. A typical catalyst is formed from copper(I) iodide and phenanthroline. The reaction is an alternative to the Buchwald–Hartwig amination reaction.

  6. Hiyama coupling - Wikipedia

    en.wikipedia.org/wiki/Hiyama_coupling

    The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds (C-C bonds). This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo - and regioselectivity . [ 1 ]

  7. Negishi coupling - Wikipedia

    en.wikipedia.org/wiki/Negishi_coupling

    The Negishi coupling is a widely employed transition metal catalyzed cross-coupling reaction. The reaction couples organic halides or triflates with organozinc compounds, forming carbon-carbon bonds (C-C) in the process. A palladium (0) species is generally utilized as the catalyst, though nickel is sometimes used.

  8. Dichlorocarbene - Wikipedia

    en.wikipedia.org/wiki/Dichlorocarbene

    In 1835, the French chemist Auguste Laurent recognised chloroform as CCl 2 • HCl (then written as C 8 Cl 8 • H 4 Cl 4) [a] in his paper on analysing some organohalides. Laurent also predicted a compound seemingly consisting of 2 parts dichlorocarbene which he named Chlorétherose (possibly Tetrachloroethylene, which was not known to exist at the time.) [8]

  9. Decarboxylative cross-coupling - Wikipedia

    en.wikipedia.org/wiki/Decarboxylative_cross-coupling

    Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO 2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required. Decarboxylative cross-coupling general reaction scheme