Search results
Results from the WOW.Com Content Network
Thus, hydroxyl radicals must be formed immediately adjacent to nucleic acids in order to react. Radiolysis of water creates peroxides that can act as diffusable, latent forms of hydroxyl radicals. Some metal ions in the vicinity of DNA generate the hydroxyl radicals from peroxide. [4] H 2 O + hν → H 2 O + + e − H 2 O + e − → H 2 O − ...
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
The hydroxyl radical can damage virtually all types of macromolecules: carbohydrates, nucleic acids , lipids (lipid peroxidation) and amino acids (e.g. conversion of Phe to m-Tyrosine and o-Tyrosine). The hydroxyl radical has a very short in vivo half-life of approximately 10 −9 seconds and a high reactivity. [5]
The subsequent removal of the 7α hydroxyl group by intestinal bacteria will then result in a less toxic but still-functional dihydroxy bile acid. Over the course of vertebrate evolution, a number of positions have been chosen for placement of the third hydroxyl group. Initially, the 16α position was favored, in particular in birds.
Threonine (symbol Thr or T) [2] is an amino acid that is used in the biosynthesis of proteins.It contains an α-amino group (which is in the protonated −NH + 3 form when dissolved in water), a carboxyl group (which is in the deprotonated −COO − form when dissolved in water), and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid.
Carcinogenic changes are shown in orange. Protective changes are show in blue. Note that this scheme is identical to that for 2-OH-E 2, with the hydroxyl, methoxy and quinone groups occurring at C-2 instead of C-4. The enzyme most responsible for estradiol 4-hydroxylation is CYP1B1. In humans, CYP1B1 mRNA and protein exhibit constitutive ...
It is not essential to the human diet, since it is synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865 by Emil Cramer. [5] Its name is derived from the Latin for silk, sericum. Serine's structure was established in 1902. [6] [7]
Because cholecalciferol already has one hydroxyl group, only two (1,25) are further specified in this nomenclature, but in fact there are three (1,3,25-triol), as indicated by the name calcitriol. The 1-hydroxy group is in the alpha position, and this may be specified in the name, for instance in the abbreviation 1α,25-(OH) 2 D 3 .