Search results
Results from the WOW.Com Content Network
ρ f = Mass density of the fluid; V imm = Immersed volume of body in fluid; F b = Buoyant force; F g = Gravitational force; W app = Apparent weight of immersed body; W = Actual weight of immersed body
In physics, a body force is a force that acts throughout the volume of a body. [1] Forces due to gravity, electric fields and magnetic fields are examples of body forces. Body forces contrast with contact forces or surface forces which are exerted to the surface of an object. Fictitious forces such as the centrifugal force, Euler force, and the ...
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...
Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity, the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [7]) is given by:
There are 2 body forces acting on the channel fluid, namely, gravity and friction: =, +, where f x,g is the body force due to gravity and f x,f is the body force due to friction. f x , g can be calculated using basic physics and trigonometry: [ 27 ] F g = sin ( θ ) g M {\displaystyle F_{g}=\sin(\theta )gM} where F g is the force of gravity ...
The right side of the equation is in effect a summation of hydrostatic effects, the divergence of deviatoric stress and body forces (such as gravity). All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation .
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).