enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Body force - Wikipedia

    en.wikipedia.org/wiki/Body_force

    In physics, a body force is a force that acts throughout the volume of a body. [1] Forces due to gravity, electric fields and magnetic fields are examples of body forces. Body forces contrast with contact forces or surface forces which are exerted to the surface of an object. Fictitious forces such as the centrifugal force, Euler force, and the ...

  3. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  4. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...

  5. Outline of fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Outline_of_fluid_dynamics

    A subdiscipline of fluid mechanics – branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. A biological science – field that studies the role of physical processes in living organisms. For an example of a biological area involving fluid dynamics, see hemodynamics.

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The right side of the equation is in effect a summation of hydrostatic effects, the divergence of deviatoric stress and body forces (such as gravity). All non-relativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation .

  7. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    where b is the force acting on the body per unit mass (dimensions of acceleration, misleadingly called the "body force"), and dm = ρ dV is an infinitesimal mass element of the body. Body forces and contact forces acting on the body lead to corresponding moments of those forces relative to a given point. Thus, the total applied torque M about ...

  8. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity , the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [ 7 ] ) is given by:

  9. Magnus effect - Wikipedia

    en.wikipedia.org/wiki/Magnus_effect

    The Magnus effect or Magnus force acts on a rotating body moving relative to a fluid. Examples include a " curve ball " in baseball or a tennis ball hit obliquely. The rotation alters the boundary layer between the object and the fluid.