Search results
Results from the WOW.Com Content Network
Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol).
Extinction coefficient refers to several different measures of the absorption of light in a medium: Attenuation coefficient , sometimes called "extinction coefficient" in meteorology or climatology Mass extinction coefficient , how strongly a substance absorbs light at a given wavelength, per mass density
Molar mass: 785.557 g·mol −1 Appearance ... with an extinction coefficient of 11,300 M −1 cm −1. ... Hydride transfer by abstraction of hydride from NADH:
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
At a wavelength of 260 nm, the average extinction coefficient for double-stranded DNA is 0.020 (μg/mL) −1 cm −1, for single-stranded DNA it is 0.027 (μg/mL) −1 cm −1, for single-stranded RNA it is 0.025 (μg/mL) −1 cm −1 and for short single-stranded oligonucleotides it is dependent on the length and base composition.
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
The molar extinction coefficient is about 13,000 cm −1 M −1 and its overall effective fluorescence is about 1% that of fluorescein. It is only mildly sensitive to halide ion collision quenching. NBD-TMA was designed as a probe for monitoring renal transport of organic cations . [ 1 ]