Search results
Results from the WOW.Com Content Network
In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.
Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R.Then, the quotients / belong to the field of fractions of R (and possibly are in R itself if happens to be invertible in R) and the roots are taken in an algebraically closed extension.
The main difficulty is that, in order to solve the problem, the square-roots should be computed to a high accuracy, which may require a large number of bits. The problem is mentioned in the Open Problems Garden. [4] Blomer [5] presents a polynomial-time Monte Carlo algorithm for deciding whether a
Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of 1 2 {\displaystyle {\tfrac {1}{2}}} and the cube root of a number is the same as raising the number to the power of 1 3 {\displaystyle {\tfrac {1}{3}}} .
1.1 Sum of Roots. 6 comments. 1.2 Numbers with the sme numerals. 4 comments. 1.3 The Thinking Person's (Re-)Introduction to Probability. 7 comments. 1.4 eigenvalues.
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Partition function: Order-independent count of ways to write a given positive integer as a sum of positive integers. Möbius μ function: Sum of the nth primitive roots of unity, it depends on the prime factorization of n. Prime omega functions; Chebyshev functions; Liouville function, λ(n) = (–1) Ω(n)