Search results
Results from the WOW.Com Content Network
The sum is taken over all combinations of nonnegative integer indices k 1 through k m such that the sum of all k i is n. That is, for each term in the expansion, the exponents of the x i must add up to n. [1] [a] In the case m = 2, this statement reduces to that of the binomial theorem. [1]
The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side. The central binomial coefficient () is the number of arrangements where there are an equal number of two types of objects.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
The number of k-combinations for all k, () =, is the sum of the nth row (counting from 0) of the binomial coefficients. These combinations are enumerated by the 1 digits of the set of base 2 numbers counting from 0 to 2 n − 1 {\displaystyle 2^{n}-1} , where each digit position is an item from the set of n .
In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by The expansion is given by ( a + b + c ) n = ∑ i , j , k i + j + k = n ( n i , j , k ) a i b j c k , {\displaystyle (a+b+c)^{n}=\sum _{{i,j,k} \atop {i+j+k=n}}{n \choose i,j,k}\,a^{i}\,b^{\;\!j}\;\!c^{k},}
The sequence of primes, along with 1, is a complete sequence; any positive integer can be written as a sum of primes (and 1) using each at most once. The only harmonic number that is an integer is the number 1. [19]
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = ...
Faulhaber also knew that if a sum for an odd power is given by = + = + + + + then the sum for the even power just below is given by = = + + (+ + + (+)). Note that the polynomial in parentheses is the derivative of the polynomial above with respect to a .