enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    The term reflection is loose, and considered by some an abuse of language, with inversion preferred; however, point reflection is widely used. Such maps are involutions, meaning that they have order 2 – they are their own inverse: applying them twice yields the identity map – which is also true of other maps called reflections.

  3. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  4. Point group - Wikipedia

    en.wikipedia.org/wiki/Point_group

    The reflection point groups, defined by 1 to 3 mirror planes, can also be given by their Coxeter group and related polyhedra. The [3,3] group can be doubled, written as [[3,3]], mapping the first and last mirrors onto each other, doubling the symmetry to 48, and isomorphic to the [4,3] group.

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the intersection of L 1 and L 2. I.e., angle ∠ POP′′ will measure 2θ. A pair of rotations about the same point O will be equivalent to another rotation about point O.

  6. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    Take the intersection point C of the ray OA with the circle P. Connect the point C with an arbitrary point B on the circle P (different from C and from the point on P antipodal to C) Let h be the reflection of ray BA in line BC. Then h cuts ray OC in a point A '. A ' is the inverse point of A with respect to circle P. [4]: § 3.2

  7. Parity (physics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(physics)

    In physics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate.In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection):

  8. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  9. Centrosymmetry - Wikipedia

    en.wikipedia.org/wiki/Centrosymmetry

    In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have inversion symmetry. [2] Point reflection is a similar