enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    This can express values in the range ±65,504, with the minimum value above 1 being 1 + 1/1024. Depending on the computer, half-precision can be over an order of magnitude faster than double precision, e.g. 550 PFLOPS for half-precision vs 37 PFLOPS for double precision on one cloud provider.

  3. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.

  4. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.

  5. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  7. Octuple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Octuple-precision_floating...

    The minimum strictly positive (subnormal) value is 2 −262378 ≈ 10 −78984 and has a precision of only one bit. The minimum positive normal value is 2 −262142 ≈ 2.4824 × 10 −78913. The maximum representable value is 2 262144 − 2 261907 ≈ 1.6113 × 10 78913.

  8. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    Where standard libraries do not provide precomputed values (as <float.h> does with FLT_EPSILON, DBL_EPSILON and LDBL_EPSILON for C and <limits> does with std::numeric_limits<T>::epsilon() in C++), the best way to determine machine epsilon is to refer to the table, above, and use the appropriate power formula. Computing machine epsilon is often ...

  9. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The value distribution is similar to floating point, but the value-to-representation curve (i.e., the graph of the logarithm function) is smooth (except at 0). Conversely to floating-point arithmetic, in a logarithmic number system multiplication, division and exponentiation are simple to implement, but addition and subtraction are complex.