Search results
Results from the WOW.Com Content Network
The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture with other gases such as air). The saturation vapor pressure is the pressure at which water vapor is in thermodynamic equilibrium with its condensed state .
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to: P w (t tp = 0.01 °C) = 611.657 Pa ± 0.010 Pa at (1 − α) = 99%
This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi.
e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:
A log-lin vapor pressure chart for various liquids. The higher the vapor pressure of a liquid at a given temperature, the lower the normal boiling point (i.e., the boiling point at atmospheric pressure) of the liquid. The vapor pressure chart to the right has graphs of the vapor pressures versus temperatures for a variety of liquids. [10]
ρ of vapor Δ vap H: The table above gives properties of the vapor–liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one ...
Global distribution of Vapour-pressure deficit averaged over the years 1981-2010 from the CHELSA-BIOCLIM+ data set [1] Vapour pressure-deficit, or VPD, is the difference (deficit) between the amount of moisture in the air and how much moisture the air can hold when it is saturated. Once air becomes saturated, water will condense to form clouds ...