enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    An ordinary differential equation is a differential equation that relates functions of one variable to their derivatives with respect to that variable. A partial differential equation is a differential equation that relates functions of more than one variable to their partial derivatives. Differential equations arise naturally in the physical ...

  5. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    Continuity of real functions is usually defined in terms of limits. A function f with variable x is continuous at the real number c, if the limit of (), as x tends to c, is equal to (). There are several different definitions of the (global) continuity of a function, which depend on the nature of its domain.

  6. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function

  7. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The origins of differentiation likewise predate the fundamental theorem of calculus by hundreds of years; for example, in the fourteenth century the notions of continuity of functions and motion were studied by the Oxford Calculators and other scholars. The historical relevance of the fundamental theorem of calculus is not the ability to ...

  8. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  9. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.