enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  3. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    We define the final permutation matrix as the identity matrix which has all the same rows swapped in the same order as the matrix while it transforms into the matrix . For our matrix A ( n − 1 ) {\displaystyle A^{(n-1)}} , we may start by swapping rows to provide the desired conditions for the n-th column.

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  7. Dieudonné determinant - Wikipedia

    en.wikipedia.org/wiki/Dieudonné_determinant

    The determinant is invariant under elementary row operations; The determinant of the identity matrix is 1; If a row is left multiplied by a in R × then the determinant is left multiplied by a; The determinant is multiplicative: det(AB) = det(A)det(B) If two rows are exchanged, the determinant is multiplied by −1

  8. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  9. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    For example, when or is zero, we can eliminate the associated rows of the coefficient matrix without any changes to the rest of the output vector. If v {\displaystyle v} is null then the above equation for x {\displaystyle x} reduces to x = ( A − 1 + A − 1 B S − 1 C A − 1 ) u {\displaystyle x=\left(A^{-1}+A^{-1}BS^{-1}CA^{-1}\right)u ...