Search results
Results from the WOW.Com Content Network
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
A smooth quadric over a field k is a projective homogeneous variety for the orthogonal group (and for the special orthogonal group), viewed as linear algebraic groups over k. Like any projective homogeneous variety for a split reductive group, a split quadric X has an algebraic cell decomposition, known as the Bruhat decomposition. (In ...
for the projection tensor which projects tensors into their transverse parts; for example, the transverse part of a vector is the part orthogonal to . This tensor can be seen as the metric tensor of the hypersurface whose tangent vectors are orthogonal to X.
Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1 , ..., k n are the n principal curvatures at a point p ∈ M and X 1 , ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by
Here, saying that = is irrotational means that the vorticity tensor of the corresponding timelike congruence vanishes; thus, this Killing vector field is hypersurface orthogonal. The fact that the spacetime admits an irrotational timelike Killing vector field is in fact the defining characteristic of a static spacetime .
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is