enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Total operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Total_operating_characteristic

    For example, one could focus on the region of the curve with low false positive rate, which is often of prime interest for population screening tests. [17] Another common approach for classification problems in which P ≪ N (common in bioinformatics applications) is to use a logarithmic scale for the x-axis.

  4. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    One measure of goodness of fit is the coefficient of determination, often denoted, R 2. In ordinary least squares with an intercept, it ranges between 0 and 1. However, an R 2 close to 1 does not guarantee that the model fits the data well. For example, if the functional form of the model does not match the data, R 2 can be high despite a poor ...

  5. Segmented regression - Wikipedia

    en.wikipedia.org/wiki/Segmented_regression

    In addition, use is made of the correlation coefficient of all data (Ra), the coefficient of determination or coefficient of explanation, confidence intervals of the regression functions, and ANOVA analysis. [5] The coefficient of determination for all data (Cd), that is to be maximized under the conditions set by the significance tests, is ...

  6. Dummy variable (statistics) - Wikipedia

    en.wikipedia.org/wiki/Dummy_variable_(statistics)

    As with any addition of variables to a model, the addition of dummy variables will increase the within-sample model fit (coefficient of determination), but at a cost of fewer degrees of freedom and loss of generality of the model (out of sample model fit). Too many dummy variables result in a model that does not provide any general conclusions.

  7. Canonical analysis - Wikipedia

    en.wikipedia.org/wiki/Canonical_analysis

    In statistics, canonical analysis (from Ancient Greek: κανων bar, measuring rod, ruler) belongs to the family of regression methods for data analysis. Regression analysis quantifies a relationship between a predictor variable and a criterion variable by the coefficient of correlation r, coefficient of determination r 2, and the standard regression coefficient β.

  8. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  9. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    This idea is complementary to overfitting and, separately, to the standard adjustment made in the coefficient of determination to compensate for the subjective effects of further sampling, like controlling for the potential of new explanatory terms improving the model by chance: that is, the adjustment formula itself provides "shrinkage." But ...