Search results
Results from the WOW.Com Content Network
Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental ...
Trans-acting factors in alternative splicing in mRNA. Alternative splicing is a key mechanism that is involved in gene expression regulation. In the alternative splicing, trans-acting factors such as SR protein, hnRNP and snRNP control this mechanism by acting in trans. SR protein promotes the spliceosome assembly by interacting with snRNP(e.g. U1, U2) and splicing factors(e.g. U2AF65), and it ...
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
Gene regulatory pathway. In genetics, a regulator gene, regulator, or regulatory gene is a gene involved in controlling the expression of one or more other genes. Regulatory sequences, which encode regulatory genes, are often at the five prime end (5') to the start site of transcription of the gene they regulate. In addition, these sequences ...
Cis-regulatory elements (CREs) or cis-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes.CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology.
In DNA, regulation of gene expression normally happens at the level of RNA biosynthesis (transcription). It is accomplished through the sequence-specific binding of proteins (transcription factors) that activate or inhibit transcription. Transcription factors may act as activators, repressors, or both.
In general gene expression is regulated through changes [44] in the number and type of interactions between molecules [45] that collectively influence transcription of DNA [46] and translation of RNA. [47] Some simple examples of where gene expression is important are: Control of insulin expression so it gives a signal for blood glucose regulation.
Structure of a gene regulatory network Control process of a gene regulatory network. A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell.