enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fan Chung - Wikipedia

    en.wikipedia.org/wiki/Fan_Chung

    Fan-Rong King Chung Graham (Chinese: 金芳蓉; pinyin: Jīn Fāngróng; born October 9, 1949), known professionally as Fan Chung, is a Taiwanese-born American mathematician who works mainly in the areas of spectral graph theory, extremal graph theory and random graphs, in particular in generalizing the Erdős–Rényi model for graphs with general degree distribution (including power-law ...

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry , but the connections between these two lines of work were not discovered until much later. [ 15 ]

  4. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    Fan Chung has developed an extensive theory using a rescaled version of the Laplacian, eliminating the dependence on the number of vertices, so that the bounds are somewhat different. [ 7 ] In models of synchronization on networks, such as the Kuramoto model , the Laplacian matrix arises naturally, so the algebraic connectivity gives an ...

  5. Alon–Boppana bound - Wikipedia

    en.wikipedia.org/wiki/Alon–Boppana_bound

    In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a -regular graph, [1] meaning a graph in which every vertex has degree .

  6. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.

  7. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.

  8. Highly irregular graph - Wikipedia

    en.wikipedia.org/wiki/Highly_irregular_graph

    For every graph G, there exists a highly irregular graph H containing G as an induced subgraph. [ 3 ] This last observation can be considered analogous to a result of Dénes Kőnig , which states that if H is a graph with greatest degree r , then there is a graph G which is r -regular and contains H as an induced subgraph.

  9. Expander graph - Wikipedia

    en.wikipedia.org/wiki/Expander_graph

    In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory , design of robust computer networks , and the theory of error-correcting ...