enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    Publication timeline of some knowledge graph embedding models. In red the tensor decomposition models, in blue the geometric models, and in green the deep learning models. RESCAL [15] (2011) was the first modern KGE approach. In [16] it was applied to the YAGO knowledge graph. This was the first application of KGE to a large scale knowledge graph.

  3. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  4. Deeplearning4j - Wikipedia

    en.wikipedia.org/wiki/Deeplearning4j

    Deeplearning4j serves machine-learning models for inference in production using the free developer edition of SKIL, the Skymind Intelligence Layer. [27] [28] A model server serves the parametric machine-learning models that makes decisions about data. It is used for the inference stage of a machine-learning workflow, after data pipelines and ...

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  7. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    Foundation models are built by optimizing a training objective(s), which is a mathematical function that determines how model parameters are updated based on model predictions on training data. [34] Language models are often trained with a next-tokens prediction objective, which refers to the extent at which the model is able to predict the ...

  8. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  9. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...