enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In the technical terminology of gemology, dispersion is the difference in the refractive index of a material at the B and G (686.7 nm and 430.8 nm) or C and F (656.3 nm and 486.1 nm) Fraunhofer wavelengths, and is meant to express the degree to which a prism cut from the gemstone demonstrates "fire". Fire is a colloquial term used by ...

  3. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    Photograph of a triangular prism, dispersing light Lamps as seen through a prism. In optics, a dispersive prism is an optical prism that is used to disperse light, that is, to separate light into its spectral components (the colors of the rainbow). Different wavelengths (colors) of light will be deflected by the prism at different angles. [1]

  4. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]

  5. Abbe number - Wikipedia

    en.wikipedia.org/wiki/Abbe_number

    For example, the higher dispersion flint glasses have relatively small Abbe numbers < whereas the lower dispersion crown glasses have larger Abbe numbers. Values of V d {\displaystyle V_{\mathsf {d}}} range from below 25 for very dense flint glasses, around 34 for polycarbonate plastics, up to 65 for common crown glasses, and 75 to 85 for some ...

  6. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    [1]: 236 The birefringence of the material is the difference between these indices of refraction, Δn = n e − n o. [1]: 237 Light propagating in the direction of the optical axis will not be affected by the birefringence since the refractive index will be n o independent of polarization. For other propagation directions the light will split ...

  7. Rayleigh scattering - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_scattering

    Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.

  8. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1. Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  9. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that ...