enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Settling time - Wikipedia

    en.wikipedia.org/wiki/Settling_time

    The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = ⁡ () A general form is T s = − ln ⁡ ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...

  3. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    A typical step response for a second order system, illustrating overshoot, followed by ringing, all subsiding within a settling time. The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step ...

  4. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  5. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    The system analysis is carried out in the time domain using differential equations, in the complex-s domain with the Laplace transform, or in the frequency domain by transforming from the complex-s domain. Many systems may be assumed to have a second order and single variable system response in the time domain.

  6. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    Physically, time invariance means system’s response does not depend on what time the input begins. For example, if a spring-mass system is at equilibrium, it will respond to a given force in the same way, no matter when the force was applied. When the time-invariant system is also linear, it is called a linear time-invariant system (LTI system).

  7. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  8. Double integrator - Wikipedia

    en.wikipedia.org/wiki/Double_integrator

    Feedback system with a PD controller and a double integrator plant In systems and control theory , the double integrator is a canonical example of a second-order control system. [ 1 ] It models the dynamics of a simple mass in one-dimensional space under the effect of a time-varying force input u {\displaystyle {\textbf {u}}} .

  9. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The time an oscillator needs to adapt to changed external conditions is of the order τ = 1/(ζω 0). In physics, the adaptation is called relaxation , and τ is called the relaxation time. In electrical engineering, a multiple of τ is called the settling time , i.e. the time necessary to ensure the signal is within a fixed departure from ...