Search results
Results from the WOW.Com Content Network
Cryptography is also a branch of engineering, but an unusual one since it deals with active, intelligent, and malevolent opposition; other kinds of engineering (e.g., civil or chemical engineering) need deal only with neutral natural forces. There is also active research examining the relationship between cryptographic problems and quantum physics.
Historically, various forms of encryption have been used to aid in cryptography. Early encryption techniques were often used in military messaging. Since then, new techniques have emerged and become commonplace in all areas of modern computing. [1] Modern encryption schemes use the concepts of public-key [2] and symmetric-key. [1]
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key . [ 1 ] [ 2 ] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions .
The following outline is provided as an overview of and topical guide to cryptography: Cryptography (or cryptology) – practice and study of hiding information. Modern cryptography intersects the disciplines of mathematics, computer science, and engineering. Applications of cryptography include ATM cards, computer passwords, and electronic ...
In cryptography, a zero-knowledge proof is a protocol in which one party (the prover) can convince another party (the verifier) that some given statement is true, without conveying to the verifier any information beyond the mere fact of that statement's truth. [1]
These concepts are also important in the design of cryptographic hash functions, and pseudorandom number generators, where decorrelation of the generated values is the main feature. Diffusion (and its avalanche effect ) is also applicable to non-cryptographic hash functions .
It is commonly accepted that this paper was the starting point for development of modern cryptography. Shannon was inspired during the war to address "[t]he problems of cryptography [because] secrecy systems furnish an interesting application of communication theory". Shannon identified the two main goals of cryptography: secrecy and authenticity.
In cryptography, a product cipher combines two or more transformations in a manner intending that the resulting cipher is more secure than the individual components to make it resistant to cryptanalysis. [1] The product cipher combines a sequence of simple transformations such as substitution (S-box), permutation (P-box), and modular arithmetic.