Search results
Results from the WOW.Com Content Network
These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,
The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
There is also a connection formula for the ratio of two rising factorials given by () = (+) (),. Additionally, we can expand generalized exponent laws and negative rising and falling powers through the following identities: [11] (p 52)
Glaisher provided an asymptotic formula for the hyperfactorials, analogous to Stirling's formula for the factorials: ... is the notation for the double factorial ...
In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .
The case features many design elements from 1970s HP calculators such as the ground-breaking HP-65, including a black case with silver-striped curved sides, slope-fronted keys, and gold and blue shift keys. The faceplate is metal, bonded to the plastic case. The key legends are printed, rather than the double-shot moulding used in the vintage ...
For non-negative integers , = []! where [] is the -factorial function. Thus the q {\displaystyle q} -gamma function can be considered as an extension of the q {\displaystyle q} -factorial function to the real numbers.