Search results
Results from the WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
The human body and even its individual body fluids may be conceptually divided into various fluid compartments, which, although not literally anatomic compartments, do represent a real division in terms of how portions of the body's water, solutes, and suspended elements are segregated. The two main fluid compartments are the intracellular and ...
Micrographs of osmotic pressure on red blood cells A human white blood cell (upper right) in water swells until it bursts (at ~14 seconds) Cytolysis , or osmotic lysis , occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell.
This results in the inhibition of water reabsorption from the kidney tubules, causing high volumes of very dilute urine to be excreted, thus getting rid of the excess water in the body. Urinary water loss, when the body water homeostat is intact, is a compensatory water loss, correcting any water excess in the body.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
Current research also suggests that osmotic stress in cells and tissues may significantly contribute to many human diseases. [6] In eukaryotes, calcium acts as one of the primary regulators of osmotic stress. Intracellular calcium levels rise during hypo-osmotic and hyper-osmotic stresses.
Total body water in healthy adults is about 50–60% (range 45 to 75%) of total body weight; [1] women and the obese typically have a lower percentage than lean men. [2] Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. [3]