Search results
Results from the WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Osmosis is much like simple diffusion but it specifically describes the movement of water (not the solute) across a selectively permeable membrane until there is an equal concentration of water and solute on both sides of the membrane. Simple diffusion and osmosis are both forms of passive transport and require none of the cell's ATP energy.
A phospholipid bilayer is an example of a biological semipermeable membrane. It consists of two parallel, opposite-facing layers of uniformly arranged phospholipids. Each phospholipid is made of one phosphate head and two fatty acid tails. [3] The plasma membrane that surrounds all biological cells is an example of a phospholipid bilayer. [2]
Osmotic pressure is an important factor affecting biological cells. [4] Osmoregulation is the homeostasis mechanism of an organism to reach balance in osmotic pressure. Hypertonicity is the presence of a solution that causes cells to shrink. Hypotonicity is the presence of a solution that causes cells to swell.
Osmosis – Migration of molecules to a region of lower solute concentration; Proteostasis – biological pathways within cells that control the biogenesis, folding, trafficking and degradation of proteins present within and outside the cell; Senescence – Deterioration of function with age
Since Osmosis is a passive process, like facilitated diffusion and simple diffusion, it does not require the use of ATP. Osmosis is important in regulating the balance of water and salt within cells, thus it plays a critical role in maintaining homeostasis. [15]
Transcellular transport often involves energy expenditure whereas paracellular transport is unmediated and passive down a concentration gradient, [4] or by osmosis (for water) and solvent drag for solutes. [5] Paracellular transport also has the benefit that absorption rate is matched to load because it has no transporters that can be saturated.