Search results
Results from the WOW.Com Content Network
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
Electron affinity (data page) — Electron affinity; Electron configurations of the elements (data page) — Electron configuration of the gaseous atoms in the ground state; Electronegativities of the elements (data page) — Electronegativity (Pauling scale) Hardnesses of the elements (data page) — Mohs hardness, Vickers hardness, Brinell ...
For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.
Elastic properties of the elements (data page) Electrical resistivities of the elements (data page) Electron affinity (data page) Electron configurations of the elements (data page) Electronegativities of the elements (data page)
English: electron affinity of the elements plotted against atomic number (the lines are an guide to the eye showing the trend per period; noble gases are "group 0" that starts a trend). Deutsch: Elektronenaffinität der Elemente aufgetragen über ihrer Ordnungszahl (die Hilfslinien zeigen den Trend innerhalb der Perioden; Edelgase sind in ...
The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...
Note that these electron configurations are given for neutral atoms in the gas phase, which are not the same as the electron configurations for the same atoms in chemical environments. In many cases, multiple configurations are within a small range of energies and the irregularities shown below do not necessarily have a clear relation to ...