Search results
Results from the WOW.Com Content Network
The most common final control element in the process control industries is the control valve. The control valve manipulates a flowing fluid, such as gas, steam, water, or chemical compounds, to compensate for the load disturbance and keep the regulated process variable as close as possible to the desired set point. [1]
A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. [1] This enables the direct control of flow rate and the consequential control of process quantities such as pressure , temperature , and liquid level.
A linear actuator opens and closes valves that can be operated via linear force, the type sometimes called a "rising stem" valve. These types of valves include globe valves, rising stem ball valves, control valves and gate valves. [2] The two main types of linear actuators are diaphragm and piston.
Ordinary valves can have many ports and fluid paths. A 2-way valve, for example, has 2 ports; if the valve is open, then the two ports are connected and fluid may flow between the ports; if the valve is closed, then ports are isolated. If the valve is open when the solenoid is not energized, then the valve is termed normally open (N.O.).
Internal parts of a globe valve. This is an English version of File:Globe_valve_diagram.svg in Commons. Source I (Petteri Aimonen ) created this work entirely by myself. Date 12:01, 9 September 2009 (UTC) Author Petteri Aimonen Permission (Reusing this file) See below. Other versions Globe_valve_diagram.svg
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A non-linear valve, for instance, in a flow control application, will result in variable loop sensitivity, requiring dampened action to prevent instability. One solution is the use of the valve's non-linear characteristic in the control algorithm to compensate for this.