Search results
Results from the WOW.Com Content Network
In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125
According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree. [1] [2]
In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states. [1]
The number is always two or more; usually it is not more than some dozen. Though the number of state variables is fixed by experiment, there remains choice of which of them to use for a particular convenient description; a given thermodynamic system may be alternatively identified by several different choices of the set of state variables.
The discontinuity in , and other properties, e.g. internal energy, , and entropy,, of the substance, is called a first order phase transition. [12] [13] In order to specify the unique experimentally observed pressure, (), at which it occurs another thermodynamic condition is required, for from Fig.1 it could clearly occur for any pressure in the range .
These are electromagnetic and gravitational fields, surface tension, and motion. For such a system, only two independent intensive variables are sufficient to derive all the others by use of an equation of state. In the case of a more complex system, additional variables must be measured in order to solve for the complete state.
There are many correct collections of "Schreinemaker's rules" and the choice to use a given set of rules depends on the nature of the phase diagrams being created. Due to the phrasing of the Morey–Schreinemaker coincidence theorem, only one rule is essential to the Schreinemaker's rules. This is the so-called metastable extensions rule: [1]
Yet also other variables may be used in that form. It is directly related to Gibbs phase rule, that is, the number of independent variables depends on the number of substances and phases in the system. An equation used to model this relationship is called an equation of state.