Search results
Results from the WOW.Com Content Network
In molecular biology, the term double helix [1] refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure , and is a fundamental component in determining its tertiary structure .
Some of these structures were proposed during the 1950s before the structure of the double helix was solved, most famously by Linus Pauling. Non-helical or "side-by-side" models of DNA were proposed in the 1970s to address what appeared at the time to be problems with the topology of circular DNA chromosomes during replication (subsequently ...
Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.
In biology, parts of the DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters, tend to have a high AT content, making the strands easier to pull apart. [29] In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen ...
The Double Helix: A Personal Account of the Discovery of the Structure of DNA is an autobiographical account of the discovery of the double helix structure of DNA written by James D. Watson and published in 1968. It has earned both critical and public praise, along with continuing controversy about credit for the Nobel award and attitudes ...
The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.
When Watson and Crick produced their double helix model of DNA, it was known that most of the specialized features of the many different life forms on Earth are made possible by proteins. Structurally, proteins are long chains of amino acid subunits. In some way, the genetic molecule, DNA, had to contain instructions for how to make the ...
The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]