enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    As an example, the distance squared between the points (0,0,0,0) and (1,1,1,0) is 3 in both the Euclidean and Minkowskian 4-spaces, while the distance squared between (0,0,0,0) and (1,1,1,1) is 4 in Euclidean space and 2 in Minkowski space; increasing b 4 decreases the metric distance. This leads to many of the well-known apparent "paradoxes ...

  3. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement .

  4. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their ...

  5. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    In his second relativity paper in 1905, Henri Poincaré showed [4] how, by taking time to be an imaginary fourth spacetime coordinate ict, where c is the speed of light and i is the imaginary unit, Lorentz transformations can be visualized as ordinary rotations of the four-dimensional Euclidean sphere. The four-dimensional spacetime can be ...

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Interpreting Euclid's axioms in the spirit of this more modern approach, axioms 1–4 are consistent with either infinite or finite space (as in elliptic geometry), and all five axioms are consistent with a variety of topologies (e.g., a plane, a cylinder, or a torus for two-dimensional Euclidean geometry).

  7. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    > : Hyperspherical 3-space honeycomb or 4-polytope = : Euclidean 3-space honeycomb < : Hyperbolic 3-space honeycomb. These constraints allow for 21 forms: 6 are convex, 10 are nonconvex, one is a Euclidean 3-space honeycomb, and 4 are hyperbolic honeycombs.

  8. 16-cell - Wikipedia

    en.wikipedia.org/wiki/16-cell

    Rotations in 4-dimensional Euclidean space can be seen as the composition of two 2-dimensional rotations in completely orthogonal planes. [6] The 16-cell is a simple frame in which to observe 4-dimensional rotations, because each of the 16-cell's 6 great squares has another completely orthogonal great square (there are 3 pairs of completely ...

  9. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.