Search results
Results from the WOW.Com Content Network
The low compressibility of non-gasses, and of water in particular, leads to their often being assumed as incompressible. The low compressibility of water means that even in the deep oceans at 4 km depth, where pressures are 40 MPa, there is only a 1.8% decrease in volume. [43]
For ordinary materials, the bulk compressibility (sum of the linear compressibilities on the three axes) is positive, that is, an increase in pressure squeezes the material to a smaller volume. This condition is required for mechanical stability. [8] However, under very specific conditions, materials can exhibit a compressibility that can be ...
Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.
Includes a chart of compressibility factors versus reduced pressure and reduced temperature (on last page of the PDF document) Theorem of corresponding states on SklogWiki . This thermodynamics -related article is a stub .
Water is an inorganic compound with the chemical formula H 2 O. It is a transparent, tasteless, ... its compressibility ranges from 4.4 to 5.1 ...
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states. [1] Reduced properties are also used to define the Peng–Robinson equation of state, a model designed to provide reasonable accuracy near the critical point. [2]
Water: 2.2 GPa (0.32 Mpsi) (value increases at higher pressures) Methanol 823 MPa (at 20 °C and 1 Atm) Solid helium: 50 MPa (approximate) Air 142 kPa (adiabatic bulk modulus [or isentropic bulk modulus]) Air 101 kPa (isothermal bulk modulus) Universe (space-time) 4.5 × 10 31 Pa (for typical gravitational wave frequencies of 100Hz) [8]