enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radiant energy - Wikipedia

    en.wikipedia.org/wiki/Radiant_energy

    In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic [1] and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux (or power ) with respect to time .

  3. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    (E is Energy; h is the Planck constant; c is the speed of light; λ is wavelength.) When an X-ray photon collides with an atom, the atom may absorb the energy of the photon and boost an electron to a higher orbital level, or if the photon is extremely energetic, it may knock an electron from the atom altogether, causing the atom to ionize.

  4. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Since the energy levels of electrons in atoms are discrete, each element and each molecule emits and absorbs its own characteristic frequencies. Immediate photon emission is called fluorescence, a type of photoluminescence. An example is visible light emitted from fluorescent paints, in response to ultraviolet . Many other fluorescent emissions ...

  5. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    However, since is extremely large relative to ordinary human scales, the conversion of an everyday amount of rest mass (for example, 1 kg) from rest energy to other forms of energy (such as kinetic energy, thermal energy, or the radiant energy carried by light and other radiation) can liberate tremendous amounts of energy (~ 9 × 10 16 joules ...

  6. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.

  7. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...

  8. Template:SI radiometry units - Wikipedia

    en.wikipedia.org/wiki/Template:SI_radiometry_units

    Energy of electromagnetic radiation. Radiant energy density: w e: joule per cubic metre J/m 3: M⋅L −1 ⋅T −2: Radiant energy per unit volume. Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called ...

  9. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...