enow.com Web Search

  1. Ad

    related to: how to solve inverse trigonometry problems with variables

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values θ , {\displaystyle \theta ,} r , {\displaystyle r,} s , {\displaystyle s,} x , {\displaystyle x,} and y {\displaystyle y} all lie within appropriate ranges so that ...

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    The latter manner is commonly used in trigonometric substitution, replacing the original variable with a trigonometric function of a new variable and the original differential with the differential of the trigonometric function.

  4. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.

  5. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ ( a ) = cos( a ), meaning that the rate of change of sin( x ) at a particular angle x = a is given ...

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: + = Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem). This particular equation, however, may be written () + = (this is a simple case of a ...

  8. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

  9. Trigonometric tables - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_tables

    These two starting trigonometric values are usually computed using existing library functions (but could also be found e.g. by employing Newton's method in the complex plane to solve for the primitive root of z N − 1). This method would produce an exact table in exact arithmetic, but has errors in finite-precision floating-point arithmetic.

  1. Ad

    related to: how to solve inverse trigonometry problems with variables