enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    The applied tension () is a function of the total angle subtended by the rope on the capstan. On the verge of slipping, this is also the frictional force, which is by definition μ {\textstyle \mu } times the normal force R ( φ ) {\displaystyle R(\varphi )} .

  3. Zisman Plot - Wikipedia

    en.wikipedia.org/wiki/Zisman_Plot

    The angle of a drop of the liquid on the solid as seen in Figure 1 degrees or radians 1-cos(θ SL) The y-axis of the Zisman Plot representing wetting unitless γ L: The surface tension of the respective liquid dyne / cm γ C: The critical surface tension of the liquid needed to effectively wet the solid substrate dyne / cm

  4. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    is the angle of the tube with respect to the horizontal axis. ϕ {\displaystyle \phi } is the contact angle of the liquid on the capillary material. Substituting these expressions leads to the first-order differential equation for the distance the fluid penetrates into the tube l {\displaystyle l} :

  5. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.

  6. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in ...

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  8. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...

  9. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.. In the simplest case of circular motion at radius , with position given by the angular displacement () from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: =.