Search results
Results from the WOW.Com Content Network
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.
The Spreadsheet Value Rule. Computer scientist Alan Kay used the term value rule to summarize a spreadsheet's operation: a cell's value relies solely on the formula the user has typed into the cell. [48] The formula may rely on the value of other cells, but those cells are likewise restricted to user-entered data or formulas.
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]
Mode the most frequent value in the data set. This is the only central tendency measure that can be used with nominal data, which have purely qualitative category assignments. Generalized mean A generalization of the Pythagorean means, specified by an exponent. Geometric mean the nth root of the product of the data values, where there are n of ...
About 68% of values drawn from a normal distribution are within one standard deviation σ from the mean; about 95% of the values lie within two standard deviations; and about 99.7% are within three standard deviations. [6] This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule.
Gumbel has also shown that the estimator r ⁄ (n+1) for the probability of an event — where r is the rank number of the observed value in the data series and n is the total number of observations — is an unbiased estimator of the cumulative probability around the mode of the distribution.
In statistics, a generalized estimating equation (GEE) is used to estimate the parameters of a generalized linear model with a possible unmeasured correlation between observations from different timepoints. [1] [2]
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...