Search results
Results from the WOW.Com Content Network
Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...
Python module for geostatistical modeling, designed for mineral resource estimation Opengeostat Consulting MIT/GPL Windows, Linux and OSX Fortran 95, Cython and Python It has functions for drillhole calculations, block modeling, wireframing and geostatistics with modified gslib code linked into python gstlearn [6]
Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.
The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [ 16 ] also describes the specific use of HiGHS in its user documentation. [ 17 ]
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...
Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]
Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. [36] Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last ...
Version 0.4 (September 2011) added algorithms for geo data mining and support for multi-relational database and index structures. [ 10 ] Version 0.5 (April 2012) focuses on the evaluation of cluster analysis results, adding new visualizations and some new algorithms.