Search results
Results from the WOW.Com Content Network
The left half of the plate shows the deformed shape, while the right half shows the undeformed shape. This calculation was performed using Ansys. Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments.
The elastic section modulus is used to calculate a cross-section's resistance to bending within the elastic range, where stress and strain are proportional. The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic ...
The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory. An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.
An orthotropic bridge or orthotropic deck is typically one whose fabricated deck consists of a structural steel deck plate stiffened either longitudinally with ribs or transversely, or in both directions. This allows the fabricated deck both to directly bear vehicular loads and to contribute to the bridge structure's overall load-bearing behaviour.
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads. Of the numerous plate theories that have been developed since the late 19th century, two are widely accepted and used in engineering. These are the Kirchhoff–Love theory of plates (classical plate theory)
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
Tensile stress is the stress state caused by an applied load that tends to elongate the material along the axis of the applied load, in other words, the stress caused by pulling the material. The strength of structures of equal cross-sectional area loaded in tension is independent of shape of the cross-section.