Search results
Results from the WOW.Com Content Network
Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond is drawn as two parallel lines (=) between the two connected atoms; typographically, the equals sign is used for this. [1] [2] Double bonds were introduced in chemical notation by Russian chemist Alexander Butlerov.
The nitrate ion is one such example with three equivalent structures. The bond between the nitrogen and each oxygen is a double bond in one structure and a single bond in the other two, so that the average bond order for each N–O interaction is 2 + 1 + 1 / 3 = 4 / 3 . [8]
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects.
The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends. Two Lewis structures must be drawn: Each structure has one of the two oxygen atoms double-bonded to the nitrogen atom.
A carbon–carbon bond is a covalent bond between two carbon atoms. [1] The most common form is the single bond : a bond composed of two electrons , one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms.
The covalent bonds in this material form extended structures, but do not form a continuous network. With cross-linking, however, polymer networks can become continuous, and a series of materials spans the range from Cross-linked polyethylene , to rigid thermosetting resins, to hydrogen-rich amorphous solids, to vitreous carbon, diamond-like ...
A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist 's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid.
The prototype of a protein disulfide bond is the two-amino-acid peptide cystine, which is composed of two cysteine amino acids joined by a disulfide bond. The structure of a disulfide bond can be described by its χ ss dihedral angle between the C β −S γ −S γ −C β atoms, which is usually close to ±90°.