Search results
Results from the WOW.Com Content Network
Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number.
In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...
However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the n th roots of unity, that is, complex numbers z such that z n = 1. Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.
Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
The Cousin problem is a problem related to the analytical properties of complex manifolds, but the only obstructions to solving problems of a complex analytic property are pure topological; [80] [39] [31] Serre called this the Oka principle. [84] They are now posed, and solved, for arbitrary complex manifold M, in terms of conditions on M.
The other six Millennium Prize Problems remain unsolved, despite a large number of unsatisfactory proofs by both amateur and professional mathematicians. Andrew Wiles , as part of the Clay Institute's scientific advisory board, hoped that the choice of US$ 1 million prize money would popularize, among general audiences, both the selected ...