enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    The unit of momentum is the product of the units of mass and velocity. In SI units, if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per ...

  3. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    He defined mass as the ratio of force to acceleration, not as the ratio of momentum to velocity, so he needed to distinguish between the mass = parallel to the direction of motion and the mass = perpendicular to the direction of motion (where = / / is the Lorentz factor, v is the relative velocity between the ether and the object, and c is the ...

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Einstein Triangle. The energy–momentum relation is consistent with the familiar mass–energy relation in both its interpretations: E = mc 2 relates total energy E to the (total) relativistic mass m (alternatively denoted m rel or m tot), while E 0 = m 0 c 2 relates rest energy E 0 to (invariant) rest mass m 0.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  6. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, ... as a vector that is the product of an object's mass and velocity, ...

  7. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.

  8. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient. It may be useful to note that this is an unconventional use of the symbol τ zx; the indices are reversed as compared with standard usage in solid mechanics, and the sign is reversed. [11]

  9. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    In these frameworks, two kinds of mass are defined: rest mass (invariant mass), [note 9] and relativistic mass (which increases with velocity). Rest mass is the Newtonian mass as measured by an observer moving along with the object. Relativistic mass is the total quantity of energy in a body or system divided by c 2. The two are related by the ...