Search results
Results from the WOW.Com Content Network
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
Displacement measurement is the measurement of changes in directed distance (displacement). Devices measuring displacement are based on displacement sensors, which can be contacting or non-contacting. [1] Some displacement sensors are based on displacement transducers, [2] devices which convert displacement into another form of energy. [3]
Sensing: measuring a mechanical input by converting it to an electrical signal, e.g. a MEMS accelerometer or a pressure sensor (could also measure electrical signals as in the case of current sensors) Actuation: using an electrical signal to cause the displacement (or rotation) of a mechanical structure, e.g. a synthetic jet actuator.
PGA records the acceleration (rate of change of speed) of these movements, while peak ground velocity is the greatest speed (rate of movement) reached by the ground, and peak displacement is the distance moved. [7] [8] These values vary in different earthquakes, and in differing sites within one earthquake event, depending on a number of ...
Both methods ensure that unwanted orthogonal acceleration vectors are excluded from detection. Manufacturing an accelerometer that uses piezoresistance first starts with a semiconductor layer that is attached to a handle wafer by a thick oxide layer. The semiconductor layer is then patterned to the accelerometer's geometry.
An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch, and yaw.These are sometimes referred to as MARG (Magnetic, Angular Rate, and Gravity) [1] sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
For accelerometers, a seismic mass is attached to the crystal elements. When the accelerometer experiences a motion, the invariant seismic mass loads the elements according to Newton's second law of motion =. The main difference in working principle between these two cases is the way they apply forces to the sensing elements.