enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    Multiple constraints [ edit ] If there is more than one constraint (for example, both a volume limit and a weight limit, where the volume and weight of each item are not related), we get the multiple-constrained knapsack problem , multidimensional knapsack problem , or m - dimensional knapsack problem .

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  4. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Marston Morse applied calculus of variations in what is now called Morse theory. [6] Lev Pontryagin, Ralph Rockafellar and F. H. Clarke developed new mathematical tools for the calculus of variations in optimal control theory. [6] The dynamic programming of Richard Bellman is an alternative to the calculus of variations. [7] [8] [9] [c]

  5. Unit commitment problem in electrical power production

    en.wikipedia.org/wiki/Unit_Commitment_Problem_in...

    If the GenCo is a price maker, i.e., it has sufficient size to influence market prices, it may in principle perform strategic bidding [12] in order to improve its profits. This means bidding its production at high cost so as to raise market prices, losing market share but retaining some because, essentially, there is not enough generation capacity.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program. Integer programming studies linear programs in which some or all variables are constrained to take on integer values.

  7. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  8. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  9. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Known generically as extremum, [b] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function. [1] [2] [3] Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.