enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas. The absorption coefficient for spectral flux (a beam of radiation with a single wavelength, [W/m 2 /μm]) differs from the absorption coefficient for spectral intensity [W/sr/m 2 /μm] used in ...

  3. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2). [1] [2]

  4. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The total energy density U can be similarly calculated, except the integration is over the whole sphere and there is no cosine, and the energy flux (U c) should be divided by the velocity c to give the energy density U: = (,) Thus / ⁡ ⁡ is replaced by ⁡, giving an extra factor of 4.

  5. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient, h, is measured in , and represents the transfer of heat at an interface between two materials. This value is different at every interface and ...

  6. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The heat transfer coefficient is also known as thermal admittance in the sense that the material may be seen as admitting heat to flow. [10] An additional term, thermal transmittance, quantifies the thermal conductance of a structure along with heat transfer due to convection and radiation.

  7. Biot number - Wikipedia

    en.wikipedia.org/wiki/Biot_number

    The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.

  8. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Radiative heat transfer is the transfer of energy via thermal radiation, i.e., electromagnetic waves. [1] It occurs across vacuum or any transparent medium ( solid or fluid or gas ). [ 15 ] Thermal radiation is emitted by all objects at temperatures above absolute zero , due to random movements of atoms and molecules in matter.

  9. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption , emission , and scattering processes.