Search results
Results from the WOW.Com Content Network
Expectation conditional maximization (ECM) replaces each M step with a sequence of conditional maximization (CM) steps in which each parameter θ i is maximized individually, conditionally on the other parameters remaining fixed. [32] Itself can be extended into the Expectation conditional maximization either (ECME) algorithm. [33]
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
Direct maximization of the likelihood (or of the posterior probability) is often complex given unobserved variables. A classical approach to this problem is the expectation-maximization algorithm , which alternates computing expected values of the unobserved variables conditional on observed data, with maximizing the complete likelihood (or ...
Statistical pattern-matching has been implemented using both the expectation-maximization algorithm and the Gibbs sampler. One of the most common motif-finding tools, named Multiple EM for Motif Elicitation (MEME), uses expectation maximization and hidden Markov methods to generate motifs that are then used as search tools by its companion MAST ...
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...
The slow "standard algorithm" for k-means clustering, and its associated expectation–maximization algorithm, is a special case of a Gaussian mixture model, specifically, the limiting case when fixing all covariances to be diagonal, equal and have infinitesimal small variance.
For example, in Gaussian radial basis function, it determines the dot product of the inputs in a higher-dimensional space, called feature space. It is believed that the data become more linearly separable in the feature space, and hence, linear algorithms can be applied on the data with a higher success.
The algorithm uses several types of well known functions: Expectation maximization (EM). EM based heuristic for choosing the EM starting point. Maximum likelihood ratio based (LRT-based) heuristic for determining the best number of model-free parameters. Multi-start for searching over possible motif widths. Greedy search for finding multiple ...