Search results
Results from the WOW.Com Content Network
For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
This function, in turn, has a few parameters that are very useful in describing the variation of the observed measurements. Two such parameters are the mean and variance of the PDF. Essentially, the mean is the location of the PDF on the real number line, and the variance is a description of the scatter or dispersion or width of the PDF.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: () + ′ ().
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f ( x ) over the interval ( a , b ) is defined by: [ 1 ]
The contraharmonic mean is higher in value than the arithmetic mean and also higher than the root mean square: () where x is a list of values, H is the harmonic mean, G is geometric mean, L is the logarithmic mean, A is the arithmetic mean, R is the root mean square and C is the contraharmonic mean.