Search results
Results from the WOW.Com Content Network
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
If the {} and {} are constant and independent of the step index n, then the TTRR is a Linear recurrence with constant coefficients of order 2. Arguably the simplest, and most prominent, example for this case is the Fibonacci sequence , which has constant coefficients a n = b n = 1 {\displaystyle a_{n}=b_{n}=1} .
is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence ,,,,, …, where each number is the sum of twice the previous number, and the square number sequence ,,,,, ….
A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any
A sequence () is called hypergeometric if the ratio of two consecutive terms is a rational function in , i.e. (+) / (). This is the case if and only if the sequence is the solution of a first-order recurrence equation with polynomial coefficients.
In mathematics, the Lucas sequences (,) and (,) are certain constant-recursive integer sequences that satisfy the recurrence relation = where and are fixed integers.Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences (,) and (,).
Members of one group were told they were getting drinks with alcohol, and they did; participants in a second group were told they were getting alcohol-free drinks, and they did. So far so good.
We also note that the same shifted generating function technique applied to the second-order recurrence for the Fibonacci numbers is the prototypical example of using generating functions to solve recurrence relations in one variable already covered, or at least hinted at, in the subsection on rational functions given above.